
DXStudio Plugins „Hands On“

 - 1 -

DXStudio Plugins „Hands On“
by miko (miko@mikoweb.de)

v1.0.1 / 27.09.2010 – 2nd Version “BETA”

1 Introduction .. 3
2 Terminology ... 3
3 What does a plugin do? .. 3
4 Prerequisites ... 3

4.1 DXStudio.. 3
4.2 Visual Studio .. 4
4.3 DirectX SDK.. 4
4.4 SDK Sample... 5

5 Reading/Links .. 5
6 Basic Layout of a Plugin .. 6

6.1 The DXStudio Framework ... 6
6.2 Standard Plugin Structure... 7

6.2.1 header.xml .. 7
6.2.2 myclassscript.h ... 8
6.2.3 plugin.h/.cpp... 8
6.2.4 myclass.h/.cpp .. 8
6.2.5 thumbnail.jpg.. 8
6.2.6 buildpack.bat .. 8

6.3 Compile Procedure... 8
6.4 Utilization by the DXStudio Player ... 8

7 Compiling the SDK sample.. 9
7.1 Preparing a working project ... 9
7.2 Adjusting for the first compile ... 10

7.2.1 Including the DirectX headers and libs .. 10
7.2.2 Adjust Compiler Output ... 12
7.2.3 Modifying buildpack.bat .. 13
7.2.4 Adjust GUID .. 14

7.3 Compile .. 15
7.4 Embed and Test .. 19
7.5 Workflow of the SDK sample.. 21

7.5.1 Get an Overview... 21
7.5.2 Check Property Handlers ... 22
7.5.3 Check Method Handlers... 24
7.5.4 Check Calls of exposed Dll Functions ... 25

8 Creating your own Plugin Base Project ... 30
8.1 header xml .. 30
8.2 buildpack.bat .. 30

DXStudio Plugins „Hands On“

 - 2 -

8.3 myclassscript.h ... 31
8.4 plugin.h/cpp.. 32
8.5 myclass cpp/h ... 32
8.6 Cross-Checking .. 32

9 Writing a Plugin: GetComputerName_Plugin ... 33
9.1 Usage Target .. 33
9.2 Basic Preparations .. 33
9.3 Extending myclass.. 33
9.4 Adding Handlers .. 34
9.5 Embed and Test .. 35

DXStudio Plugins „Hands On“

 - 3 -

1 Introduction
This step-by-step guide is intended to help you get your hands dirty with DXStudio plugins. It
uses many infos that are available on the SDK wiki page – while adding my own experiences.
Be aware, though, that it can not cover all the tools’ usage in high detail. E.g., when you are
new to Visual Studio or C++, there still is a lot of reading ahead.

2 Terminology
Plugins are refered to as "DXEffects" in DXStudio. Compiled plugins are named like, “myEf-
fect.dxeffect” (and essentially are a zipped bunch of files that you add to your DXStudio
document or to the …DX Studio Documents\library\plugins folder).
Below, I’ll be using both terms, plugin and dxeffect alike.

3 What does a plugin do?
A plugin/dxeffect provides a dll and resources that can be accessed by a DXStudio document
via the DXStudio player. As a lot of interface possibilities are provided, one can access
DirectX and the Javascript engine inside DXStudio – aswell as Windows routines and a lot of
other things. This way, options to extend the DXStudio functionality are vast.

4 Prerequisites
To create a plugin/dxeffect, we need

• DXStudio (ha, whoda thunk?)
• A C++ compiler (using free Visual Studio Express here)
• Microsoft’s DirectX SDK
• Worldweaver’s SDK sample as a starting point

4.1 DXStudio
DXStudio v3.2.47 or later is needed to use a plugin made with the SDK. At the time of this
writing, v3.2.71 is available. Download the most recent version here:
http://www.dxstudio.com/
Actually, for just *creating* a plugin, one would not need the editor. To make a DXStudio
doc and embed the plugin for using and testing though, you would.
Note that your custom plugins will work with all versions of DXStudio (Freeware/Std/Pro).

DXStudio Plugins „Hands On“

 - 4 -

4.2 Visual Studio
Check for the newest Microsoft Visual Studio 2010 Express "C++" version here:
http://www.microsoft.com/express/Downloads/
Dowload and install.

Downloading and installing takes a while ;-)

After having installed VS2010Express, you might want to run WindowsUpdate and let it
check for new files.

4.3 DirectX SDK
As DXStudio is linked against the DirectX November2008 SDK, you are strongly advised to
get this one, too. Note that this does not mean that you have to use "old" DirectX driv-
ers/runtime – just the SDK.
Actually, I had a lot of inconvenience when trying to use other/newer SDK versions. This is
mainly because the DirectX helper file d3dx9_40.dll: It is delivered with DXStudio and when
using Nov2008 SDK, your plugin links to that, too.
With newer SDKs, the index number - here: 40 - is counting up, and you will have to deliver a
corresponding dll with your plugin (path finding issues ahead!) – or ensure it is present on the
users’ machines (force upgrade DirectX version).

DXStudio Plugins „Hands On“

 - 5 -

Download and install the DirectX SDK November 2008 here:
http://www.microsoft.com/downloads/details.aspx?FamilyId=5493F76A-6D37-478D-BA17-
28B1CCA4865A&displaylang=en

When firing up VS2010 after having installed the SDK, it might pause a while to integrate the
SDK help. This (usually) happens only once, though.

4.4 SDK Sample
Worldweaver’s DXStudio Player SDK Sample is available on the SDK Wiki page.
Download it here and store the zipped file for later use:
http://www.dxstudio.com/downloads/PlayerSDK_4_1_0.zip

It contains a visual Visual Studio 2008 project that we will use with VS2010 Express later on.
Once you progress with plugin development, I’d strongly recommend you create your own
custom “starter project” from the download. E.g. I removed the demo code and added some
memory checks and definitions that I’m going to use in all further projects. Then, for a new
plugin, just copy the base structure over and start…
The nice thing is that this download contains the includes of the JSAPI aswell. This is sort of
an SDK that is needed to connect the C++ environment with the Javascript Engine.

5 Reading/Links
Listed here, some sources of informations that could be helpful.

• DXStudio SDK Wiki
http://www.dxstudio.com/guide.aspx?id=f84db734-b5e6-403c-acd7-9fb96cb30cde

• SDK Forum at the DXStudio boards
http://www.dxstudio.com/forumbrowse.aspx?forumid=b6e6c10a-a92b-49c2-aaa8-
57171531a316

• Tracemonkey (Spidermonkey), the JS engine used in the player
https://wiki.mozilla.org/JavaScript:TraceMonkey
http://www.mozilla.org/js/spidermonkey/

• Mozilla’s JSAPI reference, for easy lookup of functions
https://developer.mozilla.org/en/SpiderMonkey/JSAPI_Reference

DXStudio Plugins „Hands On“

 - 6 -

6 Basic Layout of a Plugin
Before actually starting, lets talk about the build-up and work flow of a plugin. You don’t
need to do anything yet – just read. The “step-by-step” procedure will start in the next chap-
ter.

6.1 The DXStudio Framework
This is how I imagine the interconnections between the different “main components” of the
DXStudio player. It might not entirely be correct in technical terms, but helped me a lot when
trying to get a grasp of how this all works.

As we know, DXStudio’s “native” user language is Javascript. That is what we write our
DXStudio document in. For handling the Javascript code, a JS engine is being used. This one
– by itself – is written in C++, as well as the underlying DXStudio code.

So, when you e.g. add scenes.scene_1.doSomething(); to your doc, what does happen upon
execution in the player? (I’m just making this up as an example)
First, the javascript engine will parse through the script, then “route” the function call to
doSomething() to a C++ function. Inside this function then, the actual action happens. Like,
set some DirectX parameters, show an object, whatever.

DXStudio Plugins „Hands On“

 - 7 -

The relationships and interactions can grow quite complex, but this example might do for a
basic understanding. When writing plugins, remember that there are several “blocks” (JS en-
gine, DirectX, Windows) that you need to communicate with.

6.2 Standard Plugin Structure
The structure as given in the SDK sample project looks like this (shown here as visible in the
VS Solution Explorer). Below, some more details about the “standard” components/files.

6.2.1 header.xml
This is the “information file” that holds general data about the plugin. That would be things
like

• Version of the effect
• Copyrights, description
• Unique Identification number
• Embed infos (like, “only for 2D scenes”)
• Execution infos (like, “call on update or on rendering”)
• Available properties and methods info and help text for the DXStudio editor

DXStudio Plugins „Hands On“

 - 8 -

6.2.2 myclassscript.h
This file represents the “interfacing” between the Javascript Engine and your C++ plugin
code. It tells what properties and methods are available and what code should be executed
when e.g. a property is changed or a method of your dxeffect is being called.
E.g., a call to scene.effects.myeffect.doSomething() would first “hit” myclasscript on execu-
tion. There, you have to deal with that call then.

6.2.3 plugin.h/.cpp
Here, the standard plugin functions reside. Exported dll functions that are exposed show up
here (e.g. PLUG_API BOOL GetDLLInfo(…), as well as data definitions of some (very) help-
ful structures (e.g. SPlayerInfo to access certain application members and data).
The exposed dll functions are automatically called by the DXStudio player (e.g., PLUG_API
BOOL DocumentLoaded(…) is called when ..well.. the document is loaded).

6.2.4 myclass.h/.cpp
This is the class where (probably) most of your own code would be inserted. Usually, its func-
tions are either called from myclassscript.h (as a response to a script call) or from plugin.cpp,
when handling a ‘standard call’ like onUpdate(…).
Look at PLUG_API BOOL DocumentLoaded(…) in plugin.cpp. This is called by the player,
then by itself calls myclass.DocumentLoaded() – which routes to BOOL CMy-
Class::DocumentLoaded() – and here you’ll do some magic.

6.2.5 thumbnail.jpg
The thumbnail picture for the plugin, as defined in header.xml.

6.2.6 buildpack.bat
A helper batchfile that creates (actually, zips) the plugin from compiled code and resources
and copies it over to your local plugin directory. You probably need to adjust the paths in
there to make it work on your pc. We’ll do that below.

6.3 Compile Procedure
When compiling your plugin , the actual created dll (named plugin.dxpp here) is being placed
into the …PlayerSDK_4_1_0\Player\DXStudioPlayerPluginSample\pack\ directory. There,
other resources you need (like the thumbnail picture and header.xml) must reside aswell.
After that, the whole bunch is zipped by buildpack.bat and copied over to your …DX Studio
Documents\library\plugins\ folder. Now, it will show up in the DXStudio effects list and you
can add your new dxeffect via the DXStudio editor.

6.4 Utilization by the DXStudio Player
When a dxeffect is embedded into a DXStudio doc and the player runs this doc, it unzips the
plugin to a temp directory. Then, the informations in header.xml are being used to determine
how to call into the plugin’s dll (plugin.dxpp here). And in there, your added custom actions
happen.

DXStudio Plugins „Hands On“

 - 9 -

7 Compiling the SDK sample
Now, after all that theory mumbling, lets proceed to actual action! First, we’ll prepare for
compiling the SDK sample doc, then create it, test it and do a bit of deeper analyzing what
happens inside.
Note that after importing the given SDK sample into VS2010, some adjustments need to be
done. When using VS2008, there is a lot less to do.

7.1 Preparing a working project
First, locate the (already downloaded) zipped SDK sample (PlayerSDK_4_1_0.zip) and unzip
it to a directory of your choice (I use C:\Users\miko\Documents\Visual Studio
2010\Projects\).
Now, fire up Visual Studio Express, click on “Open Project…” and select the *.vcproj on the
plugin project’s PlayerSDK_4_1_0\Player\DXStudioPlayerPluginSample\ folder.

This will bring up the Conversion Wizard, as the project is VS2008, and we are using 2010
here. Press “Finish”, confirm a Security Warning, and you should see the “Conversion Com-
plete” message.
Once you expand the project’s view in the Solution Explorer to the left, you’ll see the differ-
ent project files.

DXStudio Plugins „Hands On“

 - 10 -

7.2 Adjusting for the first compile
After having successfully imported the SDK sample project into VS2010, we need to adjust
some of the presets that are in there. Creation of your very first plugin will not succeed other-
wise.

7.2.1 Including the DirectX headers and libs
Right-click on DXStudioPlayerPlugin in the Solution Explorer and bring up the properties
page. Adjust Configuration to “All Configurations” (so that the changes apply to Debug and
Release build alike).

In C/C++/General, add the path to the DirectX SDK’s include folder as an additional include
directory. In my case, this is looking like C:\Program Files %28x86%29\Microsoft DirectX
SDK %28November 2008%29\Include

DXStudio Plugins „Hands On“

 - 11 -

In Linker/General, add the path to the DirectX SDK’s lib(32) folder as an additional include
directory. In my case, this is looking like C:\Program Files %28x86%29\Microsoft DirectX
SDK %28November 2008%29\Lib\x86.

With these changes, the compiler should be able to find the needed DirectX headers and libs.

DXStudio Plugins „Hands On“

 - 12 -

7.2.2 Adjust Compiler Output
Right-click on DXStudioPlayerPlugin in the Solution Explorer and bring up the properties
page. Adjust Configuration to “All Configurations” (so that the changes apply to Debug and
Release build alike).

In General, change the path of the Output Directory to $(ProjectDir)/pack/. Also, change the
Target Name to plugin and the Target Extension to .dxpp (note the dot before dxpp).

DXStudio Plugins „Hands On“

 - 13 -

7.2.3 Modifying buildpack.bat
In buildpack.bat, check for the line

copy ..\temp.zip "%userprofile%\My Documents\DX Studio Documents\library\plugins\sample.dxeffect“

and adjust the path to your local DXStudio’s plugin folder. This is where the plugin will be
copied after compilation (and under the name given here).

Also, I found it convenient to have removed some output that is stored to the pack folder but
not needed for the plugin afterwards. So, I changed the buildpack.bat from

@echo off
@echo Building effect...
cd pack
..\zip ..\temp.zip *.*
copy ..\temp.zip "C:\Users\MiKo\Documents\DX Studio Documents\library\plugins\sample.dxeffect"
del *.pdb
del *.ilk
del ..\temp.zip
cd..
@echo Done.

To

@echo off
@echo Building effect...
cd pack
del *.pdb
del *.ilk
del *.exp
del *.lib
..\zip ..\temp.zip *.*
copy ..\temp.zip "C:\Users\MiKo\Documents\DX Studio Documents\library\plugins\sample.dxeffect"
del ..\temp.zip
cd..
@echo Done.

DXStudio Plugins „Hands On“

 - 14 -

7.2.4 Adjust GUID
In header.xml, you will notice a line like

<version id="{b2bda7a1-9a9f-4d0f-99d0-f7ba5d4ba007}" friendlyversion="1.0.5" />

The version id given here must be unique for each plugin. Although not needed for compila-
tion of “sample.dxeffect”, we’ll change the id here for training purposes.#

Fire up an empty DXStudio document, go to Properties and create a Group Identifier inside
the Network Options. Copy the numbers inside the { } brackets and paste into the id definition
in header.xml.

Rinse and save the VS project (well, just save).

DXStudio Plugins „Hands On“

 - 15 -

7.3 Compile
To ease up building the project in VS2010, you’d better activate the Build toolbar. To do so,
right-click in the toolbars section and activate Build.

Actually (try to) compile by pressing the “Build DXStudioPlayerPlugin” icon.

DXStudio Plugins „Hands On“

 - 16 -

Does the compile succeed? If not, check for these possible errors, which occurred during test
runs:

c:\program files (x86)\microsoft sdks\windows\v7.0a\include\objidl.h(11280): error C2061:
syntax error : identifier '__RPC__out_xcount_part'

To solve this, you must include the Widows v7 headers and libs *before* the SDK head-
ers/libs. So do as shown above (7.2.1), add the Windows SDK references and ensure they are
ON TOP of the list.

DXStudio Plugins „Hands On“

 - 17 -

plugin.rc(10): fatal error RC1015: cannot open include file 'afxres.h'

Right-click the file plugin.rc in the Solution Explorer, select View Code.
In the code, replace all occurrences of "afxres.h" with "windows.h" (there should be two of
them).

plugin.rc(114): fatal error RC1015: cannot open include file 'afxres.rc'.

Right-click the file plugin.rc in the Solution Explorer, select View Code.
In the code, comment out all occurrences of " #include "afxres.rc" (there should be two of
them).

DXStudio Plugins „Hands On“

 - 18 -

Finally, the Output Window should show something like this:

1>------ Build started: Project: DXStudioPlayerPlugin, Configuration: Debug Win32 ------
1> Creating library C:\Users\MiKo\Documents\Visual Studio
2010\Projects\PlayerSDK_4_1_0\Player\DXStudioPlayerPluginSample\/pack/Plug_In_1.lib and
object C:\Users\MiKo\Documents\Visual Studio
2010\Projects\PlayerSDK_4_1_0\Player\DXStudioPlayerPluginSample\/pack/Plug_In_1.exp
1> DXStudioPlayerPlugin.vcxproj -> C:\Users\MiKo\Documents\Visual Studio
2010\Projects\PlayerSDK_4_1_0\Player\DXStudioPlayerPluginSample\/pack/plugin.dxpp
1> Building effect...
1> adding: header.xml (164 bytes security) (deflated 56%)
1> adding: myimage.png (164 bytes security) (deflated 2%)
1> adding: plugin.dxpp (164 bytes security) (deflated 68%)
1> adding: thumbnail.jpg (164 bytes security) (deflated 8%)
1> 1 Datei(en) kopiert.
1> Done.
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

To check for the newly built plugin, navigate to your …DX Studio Documents\library\plugins
folder, locate the sample.dxeffect file (as this is what we named it in buildpack.bat). Double-
click it to bring up the DXStudio DXEffect info.

DXStudio Plugins „Hands On“

 - 19 -

7.4 Embed and Test
Start DXStudio, and create a new document with a 2D scene. Add the new DXEffect to the
scene via the Document Properties.

Tip
Note that after having added the DXEffect to the scene, you can change it from “embedded”
to “resource link”. This makes life a lot easier when developing plugins, as each newly com-
piled version is directly available in the document. Just don’t forget to change this before
document release.

DXStudio Plugins „Hands On“

 - 20 -

When starting the document (actually, in the editor already as well), you’ll see the demo’s
spinning bitmap.

DXStudio Plugins „Hands On“

 - 21 -

7.5 Workflow of the SDK sample
After having compiled the SDK sample, lets take a look under the hood and see what exactly
it does – and how.

As said above, there are mainly two ways to carry out an action inside a plugin:

• Calling a property or method from the Javascript code
(like scene.effects.myeffect.doSomething())
or

• Handling one of the automated calls into exposed functions (like DocumentLoaded())

7.5.1 Get an Overview
First, lets check header.xml, to get an impression what a plugin is about.

 <application type="scene3d" />
 <application type="scene2d" />

So, this plugin can be used in 2D and 3D scenes. Good to know. Depending on that data, a
plugin will (or will not) show up in the selection list when adding DXEffects to a document.

 <notify type="updatebegin"/>
 <notify type="updateend"/>
 <notify type="renderprepare"/>
 <notify type="renderbegin"/>
 <notify type="renderend"/>
 <notify type="renderscenebegin" passes="0"/>
 <notify type="rendersceneend" passes="0"/>
 <notify type="rendersceneobject" passes="0"/>

These are the different exposed plugin dll routines that will be periodically called. E.g., the
plugin will be called upon UpdateBegin, UpdateEnd, etc.
Remember? The routines that will be called reside in plugin.cpp – and there, we can add our
own stuff. We’ll look into that in detail later on.

<method id="reset" help="reset//A sample function called 'reset' that ..."/>
<property id="speed" type="float" help="speed//A float multiplier ..." default="1.0"/>

Aha, the plugin exposes a method called “reset” (without arguments, as it seems) and a prop-
erty called “speed” (which is a float). So, we can expect to see handling of those two in my-
classscript.h. Again, we will check there what is going on (see below).

DXStudio Plugins „Hands On“

 - 22 -

7.5.2 Check Property Handlers
Taking a closer look at myclassscript.h now.

The properties being handled by the the plugin must be known to the Javascript engine. To do
so, an array called myclass_props is filled with data. In the sample, this looks like

static JSPropertySpec myclass_props[] = {
 {"enable", 0, JSPROP_ENUMERATE, myclass_getEnable, myclass_setEnable},
 {"url", 1, JSPROP_ENUMERATE, myclass_getURL, myclass_setURL},
 {"width", 2, JSPROP_ENUMERATE, myclass_getWidth, myclass_setWidth},
 {"speed", 3, JSPROP_ENUMERATE, myclass_getSpeed, myclass_setSpeed},
 {0}
};

Note that – after reviewing the header.xml - we were only expecting to see “speed” here. For
educational purposes, the demo contains some more. We’ll only look at “speed” here.

 {"speed", 3, JSPROP_ENUMERATE, myclass_getSpeed, myclass_setSpeed},

Each line contains the name of the property (as it is known to the JS engine), a counting num-
ber, a constant, the C++ function to be called when the property is SET and the C++ function
when it is GET (retrieved).
So, when you have something like scene.effects.myEffect.speed = 5; in your doc’s code (this
is SET), inside the plugin, myclass_setSpeed(…) is being called.
Likewise, for var a=scene.effects.myEffect.speed, the myclass_getSpeed(…) is invoked.

myclass_getSpeed and myclass_getSpeed are both located in myclassscript.h, too. All these
getter/setter functions need to have the same calling conventions. Parameters (passed in by the
DXStudio framework) are the Javascript Context (pointer to access the Javascript engine), an
Object (pointer to the Javascript object we are working on), an id number and a pointer to a
Javascript value. The last one is where put in (or retrieve) the value that will be passed over to
DXStudio script.

static JSBool myclass_getSpeed(JSContext *cx, JSObject *obj, jsval id, jsval *vp)

DXStudio Plugins „Hands On“

 - 23 -

For myclass_getSpeed, the handler code looks like this:

(1) CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);
(2) double val=(double) myclass->speed;
(3) jsval thisval;
(4) JS_NewNumberValue(cx,val,&thisval);
(5) *vp=thisval;
(6) return JS_TRUE;

(1) This is an automatism to get a pointer to the CMyClass object (defined in myclass.h/.cpp).
We need this to access our own routines.
(2) Get the current value speed from our class (that we have the pointer to now)
(3,4) Create a new variable inside the Javascript engine to return. Remember the call like
var a=scene.effects.myEffect.speed; ? The variable “a” must be created somewhere to be re-
turned – and we do this here.
(5) Fill in the newly created variable to be returned to Javascript.
(6) Return TRUE (always)

For myclass_setSpeed, the handler code looks like this (rather similar to the GETter):

 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);
(1) jsdouble dbl;
(2) JS_ValueToNumber(cx, *vp, &dbl);
(3) myclass->speed = (FLOAT) dbl;
(4) myclass->WriteConsoleString(L"Speed set");
 return JS_TRUE;

(1,2) Convert the passed in value to a number (as it could be anything; imagine
scene.effects.myEffect.speed = “huh”;)
(3) Set the new value in our custom code
(4) Use a helper routine in our code to send some text to the DXStudio player’s console

DXStudio Plugins „Hands On“

 - 24 -

7.5.3 Check Method Handlers
Continuing with myclassscript.h.

The methods definitions are very similar to those of the properties. Again, there is an array –
this time, named myclass_methods. In the demo, it looks like

static JSFunctionSpec myclass_methods[] = {
 {"reset", myclass_reset, 0},
 {0}
};

There is only one method defined here. There is the name of the method (as known to the JS
engine, the C++ function to be called, and the number of arguments to expect (none in this
case).

Again, there is a common calling convention for all C++ functions that do handle a Javascript
method call. It looks like

static JSBool myclass_reset(JSContext *cx, JSObject *obj, uintN argc, jsval *argv,
jsval *rval)

Parameters (passed in by the DXStudio framework) are the Javascript Context (pointer to ac-
cess the Javascript engine), an Object (pointer to the Javascript object we are working on), the
number of arguments passed in, pointer to a list of arguments.

The handler code is rather straightforward then.

(1) CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);
(2) myclass->WriteConsoleString(L"Reset called!");
(3) myclass->speed=1.0f;
(4) *rval = BOOLEAN_TO_JSVAL(JS_TRUE);
(5) return JS_TRUE;

(1) This is an automatism to get a pointer to the CMyClass object (defined in myclass.h/.cpp).
We need this to access our own routines.
(2) Use a helper routine in our code to send some text to the DXStudio player’s console
(3) Just execute in our code whatever needs to be done to “reset”
(4) Place a result to return to the caller (this will be given back by the Javascript call to e.g.
var bRet = scene.effects.myEffect.reset)
(5) Return TRUE (always)

DXStudio Plugins „Hands On“

 - 25 -

7.5.4 Check Calls of exposed Dll Functions
Lets move on to plugin.h/.cpp.
In the chapters before, we did already see how the methods and properties handles of the
sample plugin look like. Now, we’re going to review calls to the exposed dll functions.

7.5.4.1 DeviceLost
PLUG_API BOOL DeviceLost(DWORD instancehandle)

This is called by the player when the DirectX device received status “lost” (maybe, it was
being minimized?), to give you a possibility to react accordingly on your own DirectX ob-
jects. In here, myclass.DeviceLost() is being called.

void CMyClass::DeviceLost()
{
 if (mysprite) mysprite->OnLostDevice();
 lostdevice=TRUE;
}

As the plugin contains a D3DXSPRITE (“mysprite”), the method OnLostDevice() is just be-
ing called on this. That way, DirectX can do on this object whatever it needs, when a device
gets lost. Additionally, an internal flag is set to remember that the current device is lost.

7.5.4.2 DeviceRestore
As for DeviceLost, we see similar behaviour for a device being restored again (like, when you
e.g. maximize the player window from minimized state).

PLUG_API BOOL DeviceRestore(DWORD instancehandle)

This calls myclass.DeviceRestore().

void CMyClass::DeviceRestore()
{
 if (mysprite) mysprite->OnResetDevice();
 lostdevice=FALSE;
}

Here, OnResetDevice() is being called on the D3DXSPRITE (“mysprite”), and the internal
flag is reset – showing that the DirectX device is (should be) operational again.

DXStudio Plugins „Hands On“

 - 26 -

7.5.4.3 DocumentLoaded
This function is called once when the DXStudio document has been loaded into the player.
Here is a good place to initialize your own objects, as the player should already be set up
(like, DirectX device created, helper structures filled, etc.).

PLUG_API BOOL DocumentLoaded(DWORD instancehandle)

This calls myclass.DocumentLoaded().

 BOOL CMyClass::DocumentLoaded()
 {
(1) WCHAR pathbuf[MAX_PATH];
 wsprintf(pathbuf, L"%s%s", g_pInfo->plugincachefolder, L"myimage.png");
 if(FAILED(D3DXCreateTextureFromFile(g_pInfo->pDevice,
 pathbuf,
 &mytexture)))
 {
 MessageBox(NULL,
 L"Could not find 'myimage.png'",
 L"Effect Compilation Error", MB_OK);
 }
 D3DXCreateSprite(g_pInfo->pDevice, &mysprite);

(2) WriteConsoleString(L"Document loaded function called!");

(3) EnterCriticalSection(g_pInfo->pJSCS);

(4) CDXVector* v = new CDXVector(10,10,10);

(5) JSObject* vobj=JS_NewObject(g_pInfo->pJSContext,
 g_pInfo->pJSC_Vector,
 NULL, NULL);

(6) jsval rval;
 const WCHAR* script = L"system.timer";
 const char* filename = "[plugin script]";
 uintN lineno=0;
 if (JS_EvaluateUCScript(g_pInfo->pJSContext,
 JS_GetGlobalObject(g_pInfo->pJSContext),
 (const jschar*) (const TCHAR*) script,
 wcslen(script),
 filename, lineno, &rval))
 {
 if (JSVAL_IS_NUMBER(rval))
 {
 jsdouble dbl;
 JS_ValueToNumber(g_pInfo->pJSContext, rval, &dbl);
 FLOAT fps = (FLOAT) dbl;
 WCHAR info[256];
 swprintf(info, 256, L"Read system.timer as %g", fps);
 WriteConsoleString(info);
 }
 }

(7) LeaveCriticalSection(g_pInfo->pJSCS);

(8) return FALSE;
 }

DXStudio Plugins „Hands On“

 - 27 -

Whohoo, a lot of interesting stuff in there! Lets break it down into smaller bits.

(1) Remember that a plugin is unzipped into a temp folder by the player on execution? This is
how you could gain access to this folder. g_pInfo already provides some preset info that you
can use. Here, a path to myimage.png is created (you need to ship that file with your
plugin/dxeffect. Read: Have it in the /pack folder when the final plugin is zipped up after
compilation).
Using DirectX routines, a texture (“mytexture”) is created from the image (show Windows
message box on error), as well as D3DXSPRITE (“mysprite”).

Note: As we did see above, OnDeviceLost is only being called on the sprite, not on the tex-
ture. This is because D3DXCreateTextureFromFile places the texture into
D3DPOOL_MANAGED (where things happen automatically).

(2) Use a helper routine in our code to send some text to the DXStudio player’s console (we
had that already before)

(3) (IMPORTANT) You’ll find and use this line quite often – and not using it where required
will bring you a lot of trouble.
Remember the DXStudio environment is a multithreaded build with several “blocks” interact-
ing. One block is the Javascript Engine. To preserve state, only one thread is allowed to ac-
cess the Javascript engine at a time.
To do so, you must “lock” the engine (read: wait until others finished their work, then do your
own things while preventing others to do theirs, then leave. If you want, imagine it working
like a public toilet ;-P). EnterCriticalSection() would help you there. It waits, then locks. So,
whenever you access the Javascript engine, use EnterCriticalSection() and the (7) correspond-
ing LeaveCriticalSection().

(4,5) These are code examples for creating a “DXStudioVector-like” object in the C++ envi-
ronment and for creating a new Vector object in the Javascript engine. They are not used here,
so we skip that (actually, I think the “new” might cause some memory garbage).

(6) Now this is a fine one. By using JS_EvaluateUCScript(), you can execute Javascript inside
the JS engine (like as you would have typed it into the DXStudio document). The actual JS
code to execute is located in variable “script”, while “filename” and “lineno” contain info that
will be shown in the player’s console in case of an error (“syntax error in…” or so).
Here, “system.timer” is executed in JS (which means “retrieve the value of system’s timer
property), returning the value of the timer as a Javascript object in “rval”.
After that, it is checked IF the returned value actually IS a number (theoretically, it could be
everything), then the value is converted to a float and again sent to the player’s console in an
info string.

(8) Actually, I’m not sure why to return FALSE here (tests with TRUE didn’t change any-
thing for me). So, we just leave it as it is.

DXStudio Plugins „Hands On“

 - 28 -

7.5.4.4 EngineStage
This function is being called several times per render pass, depending what is defined in
header.xml (see 6.2.1).

PLUG_API BOOL EngineStage(DWORD instancehandle, ES stage, int pass, SEngineInfo* ei)

Out of the different possibilities, only the ESRenderSceneBergin and ESRenderSceneEnd
stages are handled and forwared to myclass.xxxxx. This way, our code in myclass gets called
upon the START and the END of a rendering cycle.

void CMyClass::RenderSceneBegin(SEngineInfo* pEI, int pass)
{
 if ((g_pInfo->pDevice==NULL) || (lostdevice)) return;
 if (pass != 0) return;
}

Well, basically, this does achieve nothing. It just shows how we could test for a valid device,
the right pass and for a lost device. Lets move on to RenderSceneEnd, hoping there would be
more of an action.

 void CMyClass::RenderSceneEnd(SEngineInfo* pEI, int pass)
 {
 if ((g_pInfo->pDevice==NULL) || (lostdevice)) return;

(1) mv=pEI->mview;
 mp=pEI->mproj;
 D3DXMatrixInverse(&mvi, NULL, &mv);
 viewposition=D3DXVECTOR3(mvi._41,mvi._42,mvi._43);
 viewrot=pEI->camera_rot;
 D3DXMatrixIdentity(&matworld);
 LPDIRECT3DDEVICE9 pDevice=g_pInfo->pDevice;
 pDevice->SetTransform(D3DTS_WORLD, &matworld);
 pDevice->SetTransform(D3DTS_VIEW, &mv);
 pDevice->SetTransform(D3DTS_PROJECTION, &mp);

(2) mysprite->Begin(D3DXSPRITE_ALPHABLEND);
 pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
 pDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
 pDevice->SetRenderState(D3DRS_ZWRITEENABLE,FALSE);
 D3DXVECTOR3 cen(0.0f, 0.0f, 0.0f), pos(512.0f, 512.0f, 0.0f);
 D3DXMATRIX mat, mattemp;
 D3DXMatrixRotationZ(&mat, rotangle);
 D3DXMatrixTranslation(&mattemp, -256.0f, -256.0f, 0.0f);
 D3DXMatrixMultiply(&mat,&mattemp,&mat);
 D3DXMatrixTranslation(&mattemp, 256.0f, 256.0f, 0.0f);
 D3DXMatrixMultiply(&mat,&mat,&mattemp);
 mysprite->SetTransform(&mat);
 mysprite->Draw(mytexture, NULL, NULL, NULL, 0xffffffff);
 mysprite->End();
 }

(1) This code block shows some example of how to set up projection and view matrices and
device states. I believe it is not needed for the sample plugin to work.

(2) This code block is “pure DirectX” and draws a sprite (actually, the texture “mytexture”
that was created earlier on, by using a sprite). As we are in RenderSceneEnd, this is drawn on
top of all the other things in the scene (as those have already been drawn).

DXStudio Plugins „Hands On“

 - 29 -

7.5.4.5 Update
This function is called once per frame to update any calculations in the plugin.

PLUG_API BOOL Update(DWORD instancehandle, FLOAT seconds)

This calls myclass.Update().

 void CMyClass::Update(FLOAT seconds)
 {
 rotangle+=seconds*speed;
 }

Well, here, a value for “rotangle” is calculated (which is then used for rotation when drawing
the plugin’s custom texture/sprite in myclass. RenderSceneEnd)

DXStudio Plugins „Hands On“

 - 30 -

8 Creating your own Plugin Base Project
By ripping some parts out of the (already modified) sample project, we can create a base pro-
ject and use this when starting with a new plugin. First of all, make a copy of the existing pro-
ject we worked on before, so you have a backup available. Now we are going to make it a
clean “starter project”.

8.1 header xml
Select a fancy name and id placeholder (need to adapt for each new plugin)
 <dxeffect version="4.0.0" name="Sample Plugin" id="sample">

Put in whatever your standard copyright term is
 <copyright>No copyright, use as you like!</copyright>

Put in whatever your standard copyright term is
 <summary>
 <![CDATA[A sample plugin that is a good starting point for building your own.]]>
 </summary>

Once again, change the (unique) guid (need to adapt for each new plugin)
 <version id="{A0C49A8E-BDB3-4c22-BB32-1E1DD999601E}" friendlyversion="1.0.5" />

Personally, I like to keep in some dummy lines for a method and a property. Just makes it
easier to duplicate new ones later on.
 <method id="dummy1" help="dummy1(a)//A dummy1 method. Parameter a is a value."/>
 <property id="dummy2" type="float" help="dummy2//A dummy property." default="1.0"/>

8.2 buildpack.bat
In buildpack.h, change to target copy name to a fancy dummy name (need to adapt for each
new plugin).
...
copy ..\temp.zip "C:\Users\MiKo\Documents\DX Studio Documents\library\plugins\mydummy.dxeffect"
...

DXStudio Plugins „Hands On“

 - 31 -

8.3 myclassscript.h
You might want to change the internal name of JSClass myclass_class from “ZDXPLUGIN-
sample” to something else, just to be consistent.
static JSClass myclass_class = {
 "ZDXPLUGINdummy", JSCLASS_HAS_PRIVATE,
 generic_addProperty, generic_delProperty, generic_getProperty, generic_setProperty,
 generic_enumerate, generic_resolve, generic_convert, generic_finalize
};

Delete all myclass_setXXX and myclass_getXXX functions, add two new (dummy) ones:
static JSBool myclass_getDummy2(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
{
 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);

 double val = (double) 1.0f;
 jsval thisval;
 JS_NewNumberValue(cx,val,&thisval);
 *vp=thisval;

 return JS_TRUE;
}

static JSBool myclass_setDummy2(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
{
 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);

 return JS_TRUE;
}

Adapt the content of JSPropertySpec myclass_props to the new dummy property handlers
static JSPropertySpec myclass_props[] = {
 {"dummy2", 0, JSPROP_ENUMERATE, myclass_getDummy2, myclass_setDummy2},
 {0}
};

Change the one and only method handler to a dummy type and adjust JSFunctionSpec my-
class_methods accordingly.
static JSBool myclass_dummy1(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);

 *rval = BOOLEAN_TO_JSVAL(JS_TRUE);

 return JS_TRUE;
}

static JSFunctionSpec myclass_methods[] = {
 {"dummy1", myclass_dummy1, 1},
 {0}
};

DXStudio Plugins „Hands On“

 - 32 -

8.4 plugin.h/cpp
In plugin.cpp, delete the calls to myclass.RenderSceneBegin and myclass.RenderSceneEnd
inside the EngineStage function (at least, I did so for my “utility plugins”. When directly go-
ing for DirectX usage, leave them in). We’ll leave the other calls to members of myclass in
place, as they could be handy for a new project.

8.5 myclass cpp/h
Clean up the header file, so that only a few functions and variables remain.
class CMyClass
{
 public:
 CMyClass();
 ~CMyClass();
 BOOL GetJSClass(JSClass** ppJSClass, JSPropertySpec** ppJSProps,
 JSFunctionSpec** ppJSMethods, void** ppPrivate);
 BOOL DocumentLoaded();
 void DeviceLost();
 void DeviceRestore();
 void Update(FLOAT seconds);
 void WriteConsoleString(const WCHAR* str);

 BOOL lostdevice;
};

extern CMyClass myclass;

Same goes for the source file. Remove the functions that are not present in the header any-
more, and clean up the remaining blocks of demo code. I’m not going to list the changes in
detail here. You might know what to do already (if not: see next chapter, hehe).

8.6 Cross-Checking
To see if the recent “cleanup” didn’t break anything, make a test compile. Fix any errors that
might occur (like, usage of a deleted variable etc.). The compiled plugin should work now,
but not really do anything useful.
Save this newly created “base project” to a secure location and copy it over for any new pro-
jects.

DXStudio Plugins „Hands On“

 - 33 -

9 Writing a Plugin: GetComputerName_Plugin
Now, on to your very own first plugin. It will expose a method that delivers the computer
name (as known to windows) back as a string for usage in your DXStudio doc. Here, we want
to utilize both, a property and a method – both doing the same thing in slightly different ways.

9.1 Usage Target
We want to use the plugin in DXStudio script like this (accessing it by both, a method and a
property. This is kind of redundant, but will show different ways to achieve your goal):

var aString = Scenes.scene_1.effects.GetComputerName.getComputerName();

var bString = Scenes.scene_1.effects.GetComputerName.sComputername;

while this should not have any effect (obviously):

Scenes.scene_1.effects.GetComputerName.sComputername = “duh”;

Internally, the plugin shall use a Windows function to retrieve the computer’s name. Then,
convert it to an appropriate string and return it to Javascript.

9.2 Basic Preparations
Copy over your fancy plugin base project and prepare it for creating a new DXEffect by

• Changing the name and GUID in header.xml
• Adjusting the target file name in buildpack.bat

9.3 Extending myclass
Before adding the interfacing to Javascript, lets first create the main “worker routine” in my-
class. This is where we retrieve the computer’s name and return it as a string. After imple-
menting this, we can call it via our “Javascript handlers”. I’m using this code and make it a
public function in the header:

WCHAR* CMyClass::myGetComputerName()
{
 static WCHAR wcsCNAME[MAX_COMPUTERNAME_LENGTH+1];
 memset(wcsCNAME,0,sizeof(wcsCNAME));

 DWORD dwSize = MAX_COMPUTERNAME_LENGTH;
 if (GetComputerName(wcsCNAME,&dwSize)==false)
 {
 swprintf(wcsCNAME,MAX_COMPUTERNAME_LENGTH,L"n/a");
 }

 return(wcsCNAME);
}

DXStudio Plugins „Hands On“

 - 34 -

Note that transferring strings over to the Javascript engine needs them to be wide characters.
In case you retrieve multi-byte from somewhere, you’d need to do a conversion before (this is
not the case here).

9.4 Adding Handlers
When adding handlers, we start with the header.xml. I’m going to replace the “dummy”
method and property by something like this:

<method id="getComputerName" help="getComputerName()//Returns the computers name (as
known to Windows) as a string."/>
<property id="sComputername" type="string" help="sComputername//The computer's name
(as known to Windows). Read only." default=""/>

Now, in myclasscript.h, we are going to adjust values in the myclass_props and my-
class_methods arrays, so they mirror what we have added to header.xml just before:

static JSPropertySpec myclass_props[] = {
 {"sComputername", 0, JSPROP_ENUMERATE, myclass_getComputername, myclass_setComputername},
 {0}
};

As sComputername shall be read only, we could add null instead of an actual pointer to my-
class_setComputername here (where we do just nothing). Also, using flags like
JSPROP_READONLY could serve here. Personally, I like the way - as shown - best.

static JSFunctionSpec myclass_methods[] = {
 {"getComputerName", myclass_getComputerNameMethod, 0},
 {0}
};

The one and only method does not take any parameters, so the last value is 0.

Now, coming to the handler functions themselves. As we put 3 names into the myclass_xxx
arrays, we need 3 functions.

static JSBool myclass_setComputername(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
{
 // Doing nothing. Read only
 return JS_TRUE;
}

Now, this one is easy, eh?

static JSBool myclass_getComputername(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
{
 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);

 WCHAR* wcsComputername = myclass->myGetComputerName();
 size_t iSize = wcslen(wcsComputername);

 JSString* jsStrMyRet = JS_NewUCStringCopyN(cx, (jschar*) wcsComputername, iSize);

 *vp = STRING_TO_JSVAL(jsStrMyRet);

 return JS_TRUE;
}

and

DXStudio Plugins „Hands On“

 - 35 -

static JSBool myclass_getComputerNameMethod(JSContext *cx, JSObject *obj, uintN argc, jsval *argv,
jsval *rval)
{
 CMyClass* myclass=(CMyClass*) JS_GetPrivate(cx, obj);

 WCHAR* wcsComputername = myclass->myGetComputerName();
 size_t iSize = wcslen(wcsComputername);

 JSString* jsStrMyRet = JS_NewUCStringCopyN(cx, (jschar*) wcsComputername, iSize);

 *rval = STRING_TO_JSVAL(jsStrMyRet);

 return JS_TRUE;
}

The code for returning the propery value and the method result look pretty much the same.
First, the computer name string is retrieved from our “worker function” (wide character), then
its length is determined. Next, we create a new Javascript string from that C string (using a
helper function from the JS SDK that comes with the project). Then, convert the string to a
JSVAL (the universal format for all JS variables) and store it as the return value.

9.5 Embed and Test
Now, compile your very first own project. Hopefully, it will proceed without any errors. Now,
navigate to the …DX Studio Documents\library\plugins folder and locate the newly generated
DXEffect (“getComputerName.dxeffect”). Double-click to rise the plugin’s info window.

Now, embed the effect into a new DXStudio document and see how the help text you added
integrates into the editor:

DXStudio Plugins „Hands On“

 - 36 -

Then, you can use lines like these to test it:
function onFirstUpdate()
{
 print("Method: "+scene.effects.getComputerName.getComputerName());
 print("Property: "+scene.effects.getComputerName.sComputername)
}

…which produces the following output on my machine:

This (rather basic) example concludes the “Hands-On” manual, hoping to give you a head
start for own ventures into the DXStudio plugin world. Have fun!

